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Abstract. Pattern identification in the presence of noise is a main problem in 
pattern recognition. An essential characteristic of the noise acting on a pattern is 
its local nature. If a pattern is thus separated into enough sub-patterns, only few of 
them will be somehow affected, others will remain intact. In this note we propose 
a simple methodology that takes into account this property. A pattern is identified 
if enough of its sub-patterns are also identified. Since several patterns can share 
some of the sub-patterns, final decision is accomplished by means of a voting 
mechanism. Before deciding if a sub-pattern belongs to a pattern, sub-pattern 
identification in the presence of noise is done by an associative memory. 
Numerical and real examples are given to show the effectiveness of the proposal. 

1 Introduction 

A main problem in pattern recognition is pattern identification in the presence of noise. 
In real situations usually patterns appear distorted by noise and must be identified 
despite of this. One approach usually used to identify a pattern from a distorted version 
of it, is by means of an associative memory by which we reconstruct the distorted 
pattern. Associative memories have been used for pattern recovering for many years 
[1-13]. Usually, complete unaltered patterns are first used to build a chosen memory 
model. Trained memory models are next used to recover a given pattern, given a 
possibly distorted version it. This allows pattern identification. 
 One main feature of the noise affecting a pattern is its locality, i.e. the pattern is 
affected somehow at specific parts or locations; other parts remain unchanged. In this 
paper we take advantage of this situation and exploit it in two ways. In the one hand, 
we decompose the pattern into a set of sub-patterns. In the other hand, we make use of 
an associative memory specially designed to filter the noise affecting the patterns’ sub-
patterns. The resulting sets of sub-patterns are first used to build a bank of associative 
memories. During pattern recall a possibly distorted version of a pattern is first 
decomposed into its sub-patterns. Each sub-pattern is presented to its corresponding 
memory for noise cleaning. The cleaned sub-pattern is then used to index into a table 
for the set patterns sharing it. A simple but efficient voting mechanism allows to finally 
deciding the index of the corresponding pattern. 
 Lots of models of associative memories have been emerged in the last 40 years, 
starting with the Lermatrix of Steinbuch [1], then the Linear Associator of Anderson
[2] and Kohonen [3], and the well-known model proposed by Hopfield in 1982, the 
Hopfield Memory [5]. For their operation, all of these models use the same algebraic 
structure. In the 90’s appeared the so-called Morphological Associative Memories  
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(MAMS) [6] and [7]. While the classic memories found their operation on 
multiplications and additions, the MAMS do it in the min and max operations used in
Mathematical Morphology. Several of these models, especially the morphological
models are very efficient to recall patterns corrupted either with additive noise or
subtractive noise. To overcome this problem, MAMS memories and theirs variants
make use of the so-called kernel approach [6]. Kernels for MAMS are however 
difficult to find [9]. Additionally, if new patterns have to be added to the learning set
the kernels need to be recomputed again. In [11], the authors describe a memory model
able to handle mixed noise by means of the well-known median operator. Median
operation is however time consuming as know. In this paper we show how by
decomposing a pattern into its sub-patterns, we can avoid the use of kernels and the
median operator. We give numerical and realistic examples where the effectiveness of 
the proposal is tested.

2 Basics About Associative Memories 

An associative memory as defined in [13] is an input-output system able to associate an
input pattern with an output pattern as follow:     M , with a  and b ,a b
respectively the input and output patterns vectors. Each input vector forms an
association with its corresponding output vector. An association between input pattern

 and output pattern  is denoted by . For a positive integer, the

corresponding association will be . Associative memory M is represented by

a matrix whose ij-th component is  [2]. M is generated from a finite a priori set of
known associations, known as fundamental set of associ tion or simply fundamental
set (FS) [13]. If k  is an index, this FS is represented as:

a b ( ,a b) k

a

( ,k ka b

ijm
)

pbk ,1, k,ak , with p
the cardinality of the set. The patterns integrating a FS are called fundamental patterns
[13]. The nature of the FS provides an important judgment for associative
classification. If for , it holds thatpk ,1 kbka , then that memory is auto-
associative, otherwise it is hetero-associative [13].

Fundamental patterns could be distorted with noise. A distorted version of a
pattern  will be denoted as . If when presenting to an associative memory M a 
fundamental pattern, M responds with the correct pattern, we say that M presents 
perfect recall. If for all patterns of a given FS, perfect recall is obtained, M is said to
present perfect recall.

a a

3 Idea of Solution 

As already mentioned, the proposal is based on the locality of the noise affecting the 
pattern, i.e. when the object is decomposed into several parts, some of them will appear
more or less affected by noise, some others will not. From these less altered and the
unaltered parts is that the whole object is identified. For example in Figure 1(a) we 
have an image of an object for which a numerical representation (a pattern) has been 
obtained. In Figure 1(b), we have the same image but distorted with some noise, this of 
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course affects also its numerical representation. Finally, in Figure 1(c) it is shown the
same pattern but decomposed into several parts. By obtaining these set of parts (sub-
patterns), as can be appreciated some sub-patterns appear altered, some others no.
From these unaltered sub-patterns is that the object can be identified.

Figure 1. (a) An object and its numerical representation. (b) The same object altered by 
noise and its corresponding numerical representation altered also by the noise. (c) The
corresponding pattern decomposed into parts (sub-patterns). 

4 Basic Definitions

The steps composing the proposed methodology to recognize an object from its parts
(sub-patterns) are explained next. For this let us have the following definitions:

Definition 2.1. Let B  a pattern of an object O  obtained somehow (for example as an 
image-vector by the standard row scanning method or a feature vector). A sub-pattern

 of object  is a pattern obtained as b O B  but from a part of .O

We have already mentioned that to get the sub-patterns of an object it is necessary to
divide this object into parts and obtain their corresponding patterns. We have thus the
following definition:

Definition 2.2. Let a set of  sub-patterns of an object, represented as row vectors of
dimension  denoted by b

m
n mkk ,1, . The matrix B  of dimensions

containing all of these patterns as its rows is called base pattern.
nm

Definition 2.3. The set of all  matricesq kB  is called the base set of matrices or

simply the base set, and it is represented as: qkk ,1|B , with  the number of 
patterns or objects.

q
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In what follows, for notation purposes b  represents the -th sub-pattern of the

-th object, with  and i

i
k k

i mkk ,1, qi ,1, .

5 The Methodology

The proposal is composed of two main stages: 1) memory training and 2) object
recognition. During training the chosen associative memories are built. Also the so-
called voting matrix is build. During testing, the objects’ sub-patterns are presented to
the already trained memories for identification porpoises.

5.1 Learning phase 

This phase is composed of two main steps as follows:

Step 1: For each , take the b  and build associative memoryk i
k

kM . We can select 
any among the existing different models (see section 6). 

Step 2: Taking into account that several objects can share a given sub-pattern, we build
a matrix V (voting matrix) of dimensions mq , with q the number of objects and m
the number of sub-patterns. Matrix V  tells us exactly which sub-pattern is in which
object. First row of V  is reserved for first object, second row for the second object,
and so on. To build V , we first fill it of 0’s, i.e. mjqiv ji ,1;,1,0, . We then 

convert each sub-pattern b  of each base pattern  to a decimal equivalent number,

and assign this number to component v  of V . This would mean that sub-pattern b

belongs to base pattern . This completes the learning stage. 

i
k

iB

iB

k,i
i
k

5.2 Recalling phase

We have two cases. First case is related with the recalling of a pattern of the FSP, 
second case, in the contrary, is focused on the recalling of a pattern of the same FSP 
but from a distorted version of it.

Case 1: Recalling a pattern of the FSP. For each base pattern  of the FSP: kB

Step 1: We begin by building a v ting vector and filling it by 0’s as followso
000 21 qzzzZ .

Step 2: Now, for a given base pattern  (it can be anyone of them), for each of its

sub-patterns , we operate it with the corresponding associative memory

, convert it to its decimal equivalent, let say . We then look for all the

iB
i
kb

mkM k ,1, d
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appearances of  in matrix V  at column , and update the corresponding
component  of vector

d k
iz Z  as follows: For i q,1  do dvifzz kiii ,1 . We

repeat this process for each sub-pattern of .iB

zi i,j max

i

iB

0001 qzzz

i
kb iB

k, d
k

Z q,1
if

zi i,max

Step 3: We finally get the index of the corresponding pattern as:

q
i

,1arg   (1)

The whole process is repeated for each .B

Case 2: Recalling a pattern of the FSP from a distorted version of it. Given a 

distorted version  of one the patterns of the FSP: 

Step 1: Again, we begin by defining 2Z .

Step 2: For each sub-pattern  of , we operate it with the corresponding

associative memory , convert it to its decimal equivalent, let say . We
then look for all the appearances of  in matrix V  at column , and update the
corresponding component  of vector

mM k ,1

iz
d

as follows: For i  do 

. We repeat this process for each base pattern. dvzz kiii ,1

Step 3: Get the index of the corresponding pattern as:

qj
i

,1arg   (2)

5.3 Variations

Instead of using the rows of binary patterns to define the base vectors we can use their
columns or diagonals and follow the same procedure to learn and recall patterns. The 
idea is to decompose the pattern into sub-patterns for recalling.

6 Numerical Examples

In this section we provide some numerical examples to better understand the
functioning of the proposal. In the next section we give some real examples where we
test the effectiveness of the proposal.

Example 6.1. Let be the following FSP, representing the five vowels of the Latin 
Alphabet (A, E, I, O and U; 1 is for the information, 0 is for background):
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101
111
101
101
010

1B
, ,

B
, ,

111
001
011
001
111

2B

111
010
010
010
111

3

111
101
101
101
111

4B

111
101
101
101
101

5B

Learning phase: 

Step 1: Memory construction. We can use any associative memory. Let us use W
associative memory reported in [6] useful to handle with subtractive noise. Just to
remember, W memories make use of arithmetic subtraction between elements and min
( ) operator for memory building. For pattern recall they use arithmetic addition and
the max ( ) operator. For the details refer to [6]. Because each pattern is composed of
five sub-patterns, and each of these sub-patterns is of size 3, we have then the next five 
memories:

010
101

010
1W

, , , , .

011
101

010
2W

011
101

010
3W

011
101

010
4W

000
101

000
5W

For the details of how W  to W  were obtained, the interested reader is refereed to 
[6].

1 5

Step 2: Construction of matrix V . As explained in section 5.1, we proceed with each 
row of V :

For pattern 1B  and first sub-pattern 0101
1b , 2d , thus . For 

pattern

211v
1B  and second base vector 1011

2b , 5d , thus v . If we 

continue we this procedure for the remaining base patterns of 

512
1B  and the sub-patterns 

of base patterns 2B , 3B , 4B  and 5B :

75555
75557
72227
74747
57552

V
.

This ends the learning stage. 

Recalling phase:

Example 6.2. Recalling a pattern of the FSP. Let us take the first fundamental pattern 
1B  of example 6.1. Let us proceed: 
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Step 1: As discussed in section 5.2: 00000Z .

Step 2: For pattern recall a W memory uses arithmetic addition between components
and the max ( )  operator. For the details, refer to [6]. Now for each b  of , we 
have:

1
k

1B

For :0101
1b

0
1
0

000
111

000

001100
011001

001100

0
1
0

010
101

010
1
1

1 bW
.

102010 . We look for the appearances of 2 now into first column of V . As can be 

seen it appears only in the element 211v  of V , so: 0001 0Z .

For :1011
2b

1
0
1

110
000
111

100111
110011

100110

1
0
1

011
101

010
1
2

2 bW
.

105101

02Z

. We look for the appearances of 5 now into second column of V . As can 

be seen it appears in the first, fourth and fifth positions of V , so: 
.110

If we continue this way, it can be easily shown that 22005Z .

Step 3: We finally get the index of the corresponding pattern as:
. Thus the desired pattern is pattern 12,2,0,0,5maxarg

i
j 1B , that is the 

pattern we were looking for. 

Example 5.3. Recalling a pattern of the FSP given a distorted version of it. Let us now 
take the following distorting version of fundamental pattern 1B :

101
111
101
011
000

1B
.

You can observe that in this case sub-patterns b  and b  appear distorted. The 
other three are not altered. Proceeding as before: 

1
1

1
2

Step 1: As discussed in section 5.2: 00000Z .

Step 2: Now for each b  of , we have: 1
k

1B
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For 0001
1b :

0
0
0

010
101

010

000100
010001

000100

0
0
0

010
101

010
1
1

1 bW
.

100000 . We look for the appearances of 0 now into first column of V . As can be 

seen, it does not match any element of V , so: 00000Z .

For
:0111

2b

0
1
1

000
110

001

001111
011011

001110

0
1
1

011
101

010
1
2

2 bW
.

106110 . We look for the appearances of 6 into second column of V . As can be 

seen, again it does not match any element of V , so: 0000 0Z .

If we continue this way, it can be easily shown that 11003Z .

Step 3: We finally get the index of the corresponding pattern as:
. Again the recalled index coincides with the index of the

desired pattern.

11,1,0,0,3maxarg
i

j

7 Results with Real Patterns 

In this section the proposed methodology is tested with more realistic patterns. For this, 
we make use of the twelve patterns shown in Figure 2. Tests were performed with four 
associative memories: morphological associative memories M and W [6], and 

associative memories M and W [8]. Just to remember, M memories are good for 
additive noise and W memories are good for subtractive noise. For the details about the
operation of both memories, the interested readers is refereed to [6] and [8].

Figure 3 shows the recalling results. As you can appreciate, 100 percent of perfect 
recall was obtained with min (W) memories morphological and from 5 to 15% of 
noise. From then on, the performance falls little by little. However as can be seen W
memories show a better performance than M memories.

8 Conclusions and Ongoing Research 

In this note we have described a simple but effective methodology for the recalling of
patterns distorted by mixed noise. Instead of adopting the kernel method used in [6], or 
the median recently proposed in [11], we prefer to decompose each pattern into a set of 
sub-patterns. This way we can take advantage of the locality of affecting noise. During 
memory construction, sub-patterns sets are first used to build a set of memories. Next,
during pattern recall a given pattern, possibly distorted by noise is also decomposed
into its set of patterns. Each sub-pattern is operated by its corresponding memory. The 
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filtered result is then used to recover the pattern to which the sub-pattern belongs.
Finally, the index of the pattern is recovered by simple voting mechanism.

                          (a) 0%     (b) 5%    (c) 10%  (d) 15%  (e) 20%  (f) 25%  (g) 30% 

Figure 2. (a) Patterns used to test the proposal. Their size is 31x37 pixels. For testing 
these patterns were distorted by mixed noise at percentages of: (b) 5%, (c) 10%, (d)
15%, (e) 20%, (f) 25% and (g) 30% percent. One version of each letter is used. 

Nowadays, we are looking for the formal propositions (Lemmas and Theorems
and Corollaries) that specify the conditions under which the proposed methodology can 
be used to perfectly recover a given pattern from a distorted version of it. We are also
looking for more real problems where the proposal can find applicability. 
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Figure 3. Recalling results obtained by applying the proposed methodology to the set of
patterns shown in Fig. 2. 
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